Talk:936: Password Strength

Explain xkcd: It's 'cause you're dumb.
Jump to: navigation, search

You still have to vary the words with a bit of capitalization, punctuation and numbers a bit, or hackers can just run a dictionary attack against your string of four words. Davidy²²[talk] 09:12, 9 March 2013 (UTC)

No you don't. Hackers cannot run a dictionary attack against a string of four randomly picked words. Look at the number of bits displayed in the image: 11 bits for each word. That means he's assuming a dictionary of 2048 words, from which each word is picked randomly. The assumption is that the cracker knows your password scheme. 86.81.151.19 20:17, 28 April 2013 (UTC) Willem

I just wrote a program to bruteforce this password creation method. https://github.com/KrasnayaSecurity/xkcd936/blob/master/listGen936.py Once I get it I'll try coming up with more bruteforcing algorithms such as substituting symbols, numbers, camel case, and the like. Point is, don't rely on this or any one method. I wouldn't be surprised if the crackers are already working on something like this. Lieutenant S. (talk) 07:03, 8 September 2014 (UTC)
It took 1.25 hours to bruteforce "correcthorsebatterystaple" using the 2,000 most common words with one CPU. Lieutenant S. (talk) 07:09, 9 September 2014 (UTC)
1) ... as compared to 69 milliseconds for the other method. 2) Since you are able to test 3,9 billion passwords as second (very impressive!) I am guessing that your setup is not performing its attack over a ”weak remote service”, which is breaking the rules of the #936 game. 3) five words and a 20k-wordlist would get you 9400 years (still breaking the weak remote service rule).--Gnirre (talk) 09:13, 14 October 2014 (UTC)

Sometimes this is not possible. (I'm looking at you, local banks with 8-12 character passwords and PayPal) If I can, I use a full sentence. A compound sentence for the important stuff. This adds the capitalization, punctuation and possibly the use of numbers while it's even easier to remember then Randall's scheme. I think it might help against the keyloggers too, if your browser/application autofills the username filed, because you password doesn't stand out from the feed with being gibberish. 195.56.58.169 09:01, 30 August 2013 (UTC)

The basic concept can be adapted to limited-length passwords easily enough: memorize a phrase and use the first letter of each word. It'll require about a dozen words (you're only getting 4.7 bits per letter at best, actually less because first letters of words are not truly random, though they are weakly if at all correlated with their neighbors -- based on the frequencies of first letters of words in English, and assuming no correlation between each first letter and the next, I calculate about 4 bits per character of Shannon entropy). SteveMB 18:35, 30 August 2013 (UTC)

Followup: The results of extracting the first letters of words in sample texts (the Project Gutenberg texts of The Adventures of Huckleberry Finn, The War of the Worlds, and Little Fuzzy) and applying a Shannon entropy calculation were 4.07 bits per letter (i.e. first letter in word) and 8.08 bits per digraph (i.e. first letters in two consecutive words). These results suggest that first-letter-of-phrase passwords have approximately 4 bits per letter of entropy. --SteveMB (talk) 14:21, 4 September 2013 (UTC)

Addendum: The above test was case-insensitive (all letters converted to lowercase before feeding them to the [frequency counter]). Thus, true-random use of uppercase and lowercase would have 5 bits per letter of entropy, and any variation in case (e.g. preserving the case of the original first letter) would fall between 4 and 5 bits per letter. --SteveMB (talk) 14:28, 4 September 2013 (UTC)

I just have RANDOM.ORG print me ten pages of 8-character passwords and tape it to the wall, then highlight some of them and use others (say two down and to the right or similar) for my passwords, maybe a given line a line a little jumbled for more security. 70.24.167.3 13:27, 30 September 2013 (UTC)

Remind me to visit your office and secretly replace your wall-lists by a list of very similar looking strings ;) --Chtz (talk) 13:53, 30 September 2013 (UTC)

Simple.com (online banking site) had the following on it’s registration page:

“Passphrase? Yes. Passphrases are easier to remember and more secure than traditional passwords. For example, try a group of words with spaces in between, or a sentence you know you'll remember. "correct horse battery staple" is a better passphrase than r0b0tz26.”

Online security for a banking site has been informed by an online comic. Astounding. 173.245.54.78 21:22, 11 November 2013 (UTC)

The Web service Dropbox has an Easter egg related to this comic on their sign-up page. That page has a password strength indicator (powered by JavaScript) which changes as you type your password. This indicator also shows hints when hovering the mouse cursor over it. Entering "Tr0ub4dor&3" or "Tr0ub4dour&3" as the password causes the password strength indicator to fall to zero, with the hint saying, "Guess again." Entering "correcthorsebatterystaple" as the password also causes the strength indicator to fall to zero, but the hint says, "Whoa there, don't take advice from a webcomic too literally ;)." 108.162.218.95 15:17, 11 February 2014 (UTC)

The explanation said that the comic uses a dictionary[1]. In fact it's a word list, which seems similar but it's not. All the words in the word list must be easy to memorize. This means it's better not to have words such as than or if. Also, it's better not to have homophones (wood and would, for example). The sentence dictionary attack doesn't apply here. A dictionary attack requires the attacker to use all the words in the dictionary (e.g. 100,000 words). Here we must generate the 17,592,186,044,416 combinations of 4 common words. Those combinations can't be found in any dictionary. At 25 bytes per "word" that dictionary would need 400 binary terabytes to be stored. Xhfz (talk) 21:37, 11 March 2014 (UTC)

This comic was mentioned in a TED talk by Lorrie Faith Cranor on in March 2014. After performing a lot of studies and analysis, she concludes that "pass phrase" passwords are no easier to remember than complex passwords and that the increased length of the password increases the number of errors when typing it. There is a lot of other useful information from her studies that can be gleaned from the talk. Link. What she doesn't mention is the frequency of changing passwords - in most organizations it's ~90 days. I don't know where that standard originated, but (as a sys admin) I suspect it's about as ineffective as most of our other password trickery - that is that it does nothing. Today's password thieves don't bash stolen password hash tables, they bundle keyloggers with game trainers and browser plugins.--173.245.50.75 18:14, 2 July 2014 (UTC)

Lorrie Faith Cranor gets the random part of #936 word generation correct, which is great. Regarding memorizability, this study (https://cups.cs.cmu.edu/soups/2012/proceedings/a7_Shay.pdf) does not address #936. The study uses no generator for gibberish of length 11. Most comparable are perhaps two classes of five or six randomly assigned characters. None of the study's generators has 44 bits of entropy – its dictionary for the method closest to #936 – noun-instr – contains only 181 nouns. The article contains no discussion of the significance of these differences to #936. In her TED Lorrie Faith Cranor says ”sorry all you xkcd fans” which could be interpreted as judgement of #936, but there is no basis in the above article for that. It does however seem plausible that the report could be reworked to address #936. --Gnirre (talk) 10:42, 14 October 2014 (UTC)
Password-changing frequency isn't about making passwords more secure, but instead it's about mitigating the damage of a successfully cracked password. If a hacker gets your password (through any means) and your password changes every 90 days, the password the hacker has obtained is only useful for a few months at most. That might be enough, but it might not. If the hacker is brute forcing the passwords to get them, that cuts into the time the password is useful. --173.245.54.168 22:22, 13 October 2014 (UTC)
However, brute-forcing gets much easier that way.
Say the average employee is around for 10 years, which is reasonable for some companies , absurdly high for others, and a bit low for a family business. That's 40 password changes.
Now if you have to remember another password every now and then, you sacrifice complexity, lest you forget it. A factor of 40 is like one character less. But how much shorter will the password be? It's more likely that it's gonna be 3 or 4 characters less. Congrats, you just a factor of 1000's for a perceived "mitigation", which doesn't even work. Pro attackers can vacuum your server in a DAY once they have the PW. 141.101.104.53 13:03, 4 December 2014 (UTC)

Just because you are required to have a password that has letters and numbers in it doesn't mean you can't make it memorable. When caps are required, use CamelCase. When punctuation is required, make it an ampersand (&) or include a contraction. When numbers are required, pick something that has significance to you (your birthday, the resolution of your television, ect.). Keep in mind that, if your phrase is an actual sentence, the password entropy is 1.1 bits per character (http://what-if.xkcd.com/34), so length is key if you want your password to be secure. (Though no known algorithm can actually exploit the 1.1 bits of entropy to gain time, so it might be more like 11 bits of entropy per word. Even then, my passwords have nonexistent and uncommon words in them, (like doge or trope), which also adds some entropy.) 108.162.246.213 22:18, 1 September 2014 (UTC)

Flip side of the story, the "capital plus small plus other char" policy doesn't make your password any safer.
The German company T-online had an experimental gateway with the password, "internet". Now that sucked. No problem, tho, because that gateway wasn't accessible from outside. When they went live, they "improved" the password to "Internet1". There are still lots of these passwords around: first letter is a Cap, and the only non-alphabetic char is a 1 at the end. This doesn't add any entropy. 141.101.104.53 13:03, 4 December 2014 (UTC)
This shows that about one third of all digits in a sample of passwords was "1" . 141.101.104.53 13:14, 4 December 2014 (UTC)

You can also troll the brute-force engine by using words from other languages, fictional books and video games.--Horsebattery (talk) 03:04, 3 November 2014 (UTC)

That's a good idea; it adds to the entropy bits per word. If you really want to throw them off, mix different languages. Just don't use very well-known words; I'm sure the hackers have cojones and Blitzkrieg in their dictionaries. 141.101.104.53 13:03, 4 December 2014 (UTC)

Also, passwords that are 'hard to remember' are themselves a security vulnerability. A password reset scheme (or even a lockout scheme) is a vulnerability. The more it needs to be used, the harder it becomes to police that vulnerability. Relatedly, hard-to-remember passwords leave users uncertain whether their password has been changed by someone else or they've just forgotten it. Ijkcomputer (talk) 15:32, 18 December 2014 (UTC)

Personal tools
Namespaces

Variants
Actions
Navigation
Tools

It seems you are using noscript, which is stopping our project wonderful ads from working. Explain xkcd uses ads to pay for bandwidth, and we manually approve all our advertisers, and our ads are restricted to unobtrusive images and slow animated GIFs. If you found this site helpful, please consider whitelisting us.

Want to advertise with us, or donate to us with Paypal or Bitcoin?