# 217: e to the pi Minus pi

e to the pi Minus pi |

Title text: Also, I hear the 4th root of (9^2 + 19^2/22) is pi. |

## Explanation

Computers use "floating point" numbers to store decimals. As noted in the comic, e^pi - pi is 19.999099979. However, Hat Guy's teammates' algorithms truncate to 3 decimal digits — giving a result of 19.999. Yet the programmers thought that 19.999 should come out to 20 unless they had errors in their algorithms (they did not; 19.999 would be the correct result). ACM is the Association for Computing Machinery; it sponsors the International Collegiate Programming Contest.

- In the title text, another mathematical coincidence is presented. The 4th root of (9^2 + 19^2/22) is 3.1415926525, which is extremely close to pi (≈3.1415926535).

## Transcript

- Cueball: Hey, check it out: e^pi-pi is 19.999099979. That's weird.
- Black Hat: Yeah. That's how I got kicked out of the ACM in college.
- Cueball: . . . what?
- Black Hat: During a competition, I told the programmers on our team that e^pi-pi was a standard test of floating-point handlers--it would come out to 20 unless they had rounding errors.
- Cueball: That's awful.
- Black Hat: Yeah, they dug through half their algorithms looking for the bug before they figured it out.

**add a comment!**

# Discussion

Asserting that the programmers' algorithms truncated to three decimal digits is an unsupported and unnecessary extrapolation. Most floating-point implementations use binary, not decimal, and 19.999099979 *looks* very much like a rounding error in binary floating-point that has accumulated over several operations. Daddy (talk) 12:39, 29 April 2013 (UTC)