Editing 1162: Log Scale

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 17: Line 17:
 
A {{w|Logarithmic scale|log scale}} is a way of showing largely unequal data sizes in a comprehensible way, using an exponential function between each notch on the y axis of a graph. So for example the first on a Y axis of a graph using a log-10-scale would be 1, then 10, then 100 and 1000 for the fourth. A {{w|logarithm|log/logarithmic function}} is the {{w|inverse function|inverse}} of a corresponding {{w|Exponential growth|exponential function}}. A log-scale version of the chart in the comic would look like this:
 
A {{w|Logarithmic scale|log scale}} is a way of showing largely unequal data sizes in a comprehensible way, using an exponential function between each notch on the y axis of a graph. So for example the first on a Y axis of a graph using a log-10-scale would be 1, then 10, then 100 and 1000 for the fourth. A {{w|logarithm|log/logarithmic function}} is the {{w|inverse function|inverse}} of a corresponding {{w|Exponential growth|exponential function}}. A log-scale version of the chart in the comic would look like this:
  
βˆ’
[[File:Log_Chart_1162.png | 600px]]
+
[[File:Log_Chart_1162.png]]
  
 
The log scale can also be abused to make data look more uniform than it really is. On a log scale the energy density of uranium looks larger than that of the other materials, but not dramatically so. The joke is that if one wanted to make their point "properly," they would go ahead and use ridiculous amounts of paper to show the difference between bars using a linear scale; this method would focus more on the shock factor of the differences in question, and less on actual communication/representation of data. Cueball seems to be passionate about the MJ/kg of uranium, so he would rather demonstrate the grandeur of the data than use a more efficient scale.
 
The log scale can also be abused to make data look more uniform than it really is. On a log scale the energy density of uranium looks larger than that of the other materials, but not dramatically so. The joke is that if one wanted to make their point "properly," they would go ahead and use ridiculous amounts of paper to show the difference between bars using a linear scale; this method would focus more on the shock factor of the differences in question, and less on actual communication/representation of data. Cueball seems to be passionate about the MJ/kg of uranium, so he would rather demonstrate the grandeur of the data than use a more efficient scale.

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)