Editing 1724: Proofs

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 34: Line 34:
 
The axiom of choice itself states that for every collection of disjoint nonempty sets, you can have a function that draws one element from each set of the collection. This axiom, once considered controversial, was added relatively late to the axiomatic set theory, and even contemporary mathematicians still study which theorems really require its inclusion. In the title text the decision of whether to take the axiom of choice is made by a deterministic process, that is a process which future states can be developed with no randomness involved. {{w|Determinacy}} of infinite games is used as a tool in the set theory, however the deterministic process is rather a term of the {{w|stochastic process|stochastic processes theory}}, and the {{w|dynamical systems theory}}, branches of mathematics far from the abstract set theory, which makes the proof even more exotic. The axiom of choice was mentioned earlier in [[804: Pumpkin Carving]] and later in [[982: Set Theory]], another comic about a math class with a similar theme on how teachers teach their student mathematical proofs.
 
The axiom of choice itself states that for every collection of disjoint nonempty sets, you can have a function that draws one element from each set of the collection. This axiom, once considered controversial, was added relatively late to the axiomatic set theory, and even contemporary mathematicians still study which theorems really require its inclusion. In the title text the decision of whether to take the axiom of choice is made by a deterministic process, that is a process which future states can be developed with no randomness involved. {{w|Determinacy}} of infinite games is used as a tool in the set theory, however the deterministic process is rather a term of the {{w|stochastic process|stochastic processes theory}}, and the {{w|dynamical systems theory}}, branches of mathematics far from the abstract set theory, which makes the proof even more exotic. The axiom of choice was mentioned earlier in [[804: Pumpkin Carving]] and later in [[982: Set Theory]], another comic about a math class with a similar theme on how teachers teach their student mathematical proofs.
  
Although Miss Lenhart did retire a year ago after [[1519: Venus]], she seems to have returned here for a math course at university level, but continues the trend she finished with in her prior class. A very similar Miss Lenhart comic was later released with [[2028: Complex Numbers]].
+
Although Miss Lenhart did retire a year ago after [[1519: Venus]], she seems to have returned here for a math course at university level, but continues the trend she finished with in her prior class.
  
 
==Transcript==
 
==Transcript==

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)