Editing 2319: Large Number Formats

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 81: Line 81:
 
| 10^13.4024 ''(title text)''
 
| 10^13.4024 ''(title text)''
 
| A person who has come back to numbers after a journey deep into some random theoretical field
 
| A person who has come back to numbers after a journey deep into some random theoretical field
βˆ’
| In some fields of mathematics, especially those dealing with very {{w|large numbers}}, numbers are sometimes represented by raising ten (or some other convenient base) to an oddly precise power, to facilitate comparison of their magnitudes without filling up pages upon pages of digits.  An example of this is {{w|Skewes's number}}, which is formally calculated to be ''e''<sup>''e''<sup>''e''<sup>79</sup></sup></sup>, but is more commonly approximated as 10<sup>10<sup>10<sup>34</sup></sup></sup>. 13.4024 is a rounded version of the {{w|common logarithm}} of 25,259,974,097,204 (log<sub>10</sub> 25,259,974,097,204 = 13.4024329009); thus, this "format" is still mathematically correct, but uncommon. However, only by using many more digits will the result get close enough to be rounded to the original number 10^13.40243290087302 = 25,259,974,097,203.5, which would round up to the correct number. The number from the title text, 10^13.4024 = 25,258,060,548,319.6, differs from the original number by over a billion.
+
| In some fields of mathematics, especially those dealing with very {{w|large numbers}}, numbers are sometimes represented by raising ten (or some other convenient base) to an oddly precise power, to facilitate comparison of their magnitudes without filling up pages upon pages of digits.  An example of this is {{w|Skewes's number}}, which is formally calculated to be ''e''<sup>''e''<sup>''e''<sup>79</sup></sup></sup>, but is more commonly approximated as 10<sup>10<sup>10<sup>34</sup></sup></sup>. 13.4024 is a rounded version of the {{w|common logarithm}} of 25,259,974,097,204 (log<sub>10</sub> 25,259,974,097,204 = 13.4024329009); thus, this "format" is still mathematically correct, but uncommon. However, only by using many more digits will the result get close enough to be rounded to the original number 10^13.40243290087302 = 25,259,974,097,203.5, which would round up to the correct number. The number from the title text, 10^13.4024 = 25,258,060,548,319.6, differs from theoriginal number by over a billion.
 
|}
 
|}
  

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)