Difference between revisions of "Talk:1159: Countdown"

Explain xkcd: It's 'cause you're dumb.
Jump to: navigation, search
m (fixing my bad indentation fix)
Line 5: Line 5:
 
::You are right, the harmonic series is divergent. However, the maximal number of digits - which can be possibly displayed - is finite. Which distribution would you suggest? Sebastian --[[Special:Contributions/178.26.121.97|178.26.121.97]] 19:35, 11 January 2013 (UTC)
 
::You are right, the harmonic series is divergent. However, the maximal number of digits - which can be possibly displayed - is finite. Which distribution would you suggest? Sebastian --[[Special:Contributions/178.26.121.97|178.26.121.97]] 19:35, 11 January 2013 (UTC)
  
:::Sebastian, do you know the specific name of the statistical principle you're invoking? I agree, but [[User:St.nerol|St.nerol]] does not, and he has a quick tendency to remove things. One part of it is that you don't know the magnitude of a number, exponential distribution is a more appropriate model than linear. Another part is about the unlikelihood of the middle digits being zero. - [[User:Frankie|Frankie]] ([[User talk:Frankie|talk]]) 21:37, 11 January 2013 (UTC)
+
:Sebastian, do you know the specific name of the statistical principle you're invoking? I agree, but [[User:St.nerol|St.nerol]] does not, and he has a quick tendency to remove things. One part of it is that you don't know the magnitude of a number, exponential distribution is a more appropriate model than linear. Another part is about the unlikelihood of the middle digits being zero. - [[User:Frankie|Frankie]] ([[User talk:Frankie|talk]]) 21:37, 11 January 2013 (UTC)
::::{{w|Benford's law}} is about the probability of certain first digit(s). Sebastian --[[Special:Contributions/178.26.121.97|178.26.121.97]] 22:34, 11 January 2013 (UTC)
+
::{{w|Benford's law}} is about the probability of certain first digit(s). Sebastian --[[Special:Contributions/178.26.121.97|178.26.121.97]] 22:34, 11 January 2013 (UTC)
:::::Hmm... "Benford's law also concerns the expected distribution for digits beyond the first, which approach a uniform distribution". I missed that the first time I read the article. Okay, that covers the essential parts of the argument. - [[User:Frankie|Frankie]] ([[User talk:Frankie|talk]]) 19:43, 12 January 2013 (UTC)
+
:::Hmm... "Benford's law also concerns the expected distribution for digits beyond the first, which approach a uniform distribution". I missed that the first time I read the article. Okay, that covers the essential parts of the argument. - [[User:Frankie|Frankie]] ([[User talk:Frankie|talk]]) 19:43, 12 January 2013 (UTC)
::::::Come on now Frankie, I'm doing my best. I was just too quick to think that the claim was just another of these casual confusions about probability that non-math people have from time to time. (You know, I haven't rolled a 6 for some time, so now the chances must be pretty high...) I hadn't heard about this very counter-intuitive Benson-principle before, but found [[http://plus.maths.org/content/looking-out-number-one this page]] helpfylly explanatory.  
+
::::Come on now Frankie, I'm doing my best. I was just too quick to think that the claim was just another of these casual confusions about probability that non-math people have from time to time. (You know, I haven't rolled a 6 for some time, so now the chances must be pretty high...) I hadn't heard about this very counter-intuitive Benson-principle before, but found [[http://plus.maths.org/content/looking-out-number-one this page]] helpfylly explanatory.  
::::::So, I trust you on this. What I don't understand is, how do we know that Benfords law can be applied to this particular 14 digit number? The time left to an eruption? Also, how could a calculation of the actual probabiliy of the preciding digits being zero or anything else be made? – [[User:St.nerol|St.nerol]] ([[User talk:St.nerol|talk]]) 22:52, 12 January 2013 (UTC)
+
::::So, I trust you on this. What I don't understand is, how do we know that Benfords law can be applied to this particular 14 digit number? The time left to an eruption? Also, how could a calculation of the actual probabiliy of the preciding digits being zero or anything else be made? – [[User:St.nerol|St.nerol]] ([[User talk:St.nerol|talk]]) 22:52, 12 January 2013 (UTC)
  
::::This is a wholly inappropriate accusation to make here. If you have a problem, please put it through appropriate channels. No editor has a perfect score, we all slip up because we're all human. [[User:Lcarsos|lcarsos]]<span title="I'm an admin. I can help.">_a</span> ([[User talk:Lcarsos|talk]])  23:49, 12 January 2013 (UTC)
+
::This is a wholly inappropriate accusation to make here. If you have a problem, please put it through appropriate channels. No editor has a perfect score, we all slip up because we're all human. [[User:Lcarsos|lcarsos]]<span title="I'm an admin. I can help.">_a</span> ([[User talk:Lcarsos|talk]])  23:49, 12 January 2013 (UTC)
  
 
"I forget which one" may be a reference to the 7 known supervolcanoes, or it might be to a list published by the Guardian in 2005 of the top 10 existential threats to life on Earth, which went briefly viral. It included a supervolcano eruption, as well as viral pandemic, meteorite strike, greenhouse gases, superintelligent robots, nuclear war, cosmic rays, terrorism,  black holes, and  telomere erosion [http://www.guardian.co.uk/science/2005/apr/14/research.science2]
 
"I forget which one" may be a reference to the 7 known supervolcanoes, or it might be to a list published by the Guardian in 2005 of the top 10 existential threats to life on Earth, which went briefly viral. It included a supervolcano eruption, as well as viral pandemic, meteorite strike, greenhouse gases, superintelligent robots, nuclear war, cosmic rays, terrorism,  black holes, and  telomere erosion [http://www.guardian.co.uk/science/2005/apr/14/research.science2]

Revision as of 00:12, 13 January 2013

If you assume (with nothing else known), that large numbers have a probability about reciprocal to themselves to ensure a sum/integral of 1, the digits not being zeroes is extremely unlikely.

Whether black hat guy thinks a supervolcanoe eruption is a favourable event or being spared from one is not made entirely clear. Sebastian --178.26.121.97 08:56, 11 January 2013 (UTC)

I warmly recommend the article harmonic series (mathematics). ;-) --131.152.41.173 13:30, 11 January 2013 (UTC)
You are right, the harmonic series is divergent. However, the maximal number of digits - which can be possibly displayed - is finite. Which distribution would you suggest? Sebastian --178.26.121.97 19:35, 11 January 2013 (UTC)
Sebastian, do you know the specific name of the statistical principle you're invoking? I agree, but St.nerol does not, and he has a quick tendency to remove things. One part of it is that you don't know the magnitude of a number, exponential distribution is a more appropriate model than linear. Another part is about the unlikelihood of the middle digits being zero. - Frankie (talk) 21:37, 11 January 2013 (UTC)
Benford's law is about the probability of certain first digit(s). Sebastian --178.26.121.97 22:34, 11 January 2013 (UTC)
Hmm... "Benford's law also concerns the expected distribution for digits beyond the first, which approach a uniform distribution". I missed that the first time I read the article. Okay, that covers the essential parts of the argument. - Frankie (talk) 19:43, 12 January 2013 (UTC)
Come on now Frankie, I'm doing my best. I was just too quick to think that the claim was just another of these casual confusions about probability that non-math people have from time to time. (You know, I haven't rolled a 6 for some time, so now the chances must be pretty high...) I hadn't heard about this very counter-intuitive Benson-principle before, but found [this page] helpfylly explanatory.
So, I trust you on this. What I don't understand is, how do we know that Benfords law can be applied to this particular 14 digit number? The time left to an eruption? Also, how could a calculation of the actual probabiliy of the preciding digits being zero or anything else be made? – St.nerol (talk) 22:52, 12 January 2013 (UTC)
This is a wholly inappropriate accusation to make here. If you have a problem, please put it through appropriate channels. No editor has a perfect score, we all slip up because we're all human. lcarsos_a (talk) 23:49, 12 January 2013 (UTC)

"I forget which one" may be a reference to the 7 known supervolcanoes, or it might be to a list published by the Guardian in 2005 of the top 10 existential threats to life on Earth, which went briefly viral. It included a supervolcano eruption, as well as viral pandemic, meteorite strike, greenhouse gases, superintelligent robots, nuclear war, cosmic rays, terrorism, black holes, and telomere erosion [1]

I understand how the hidden numbers could mean that a volcano could either erupt very soon or a very long time. But I don't get why this is a joke. Is there something funnny that I am missing? -- 72.38.90.50 (talk) (please sign your comments with ~~~~)

It's a joke, because a supervolcano eruption would have a major impact on the earth, and Black Hat has a timer that will tell him when one will occur, but he is too lazy to see whether it will happen soon. -- 76.14.25.84 (talk) (please sign your comments with ~~~~)

The title-text may be a reference to the line "May the odds be ever in your favor!" in The Hunger Games. I wonder if this might also be a commentary on the foolishness of assuming that a rare event won't happen anytime soon. gijobarts (talk) 19:54, 12 January 2013 (UTC)