# Talk:123: Centrifugal Force

Revision as of 11:30, 6 August 2014 by 141.101.70.67 (talk)

Are you allowed to describe a force acting upon you when you are in an accelerating reference frame? I'm pretty sure you're not. The explanation says that from bond's point of view, he is at rest. Well, sort of. If you're in an accelerating car you can tell that you're not at rest because your inertia seems to be "pulling" you backwards. There's nothing actually pulling you, though. 108.162.219.202 05:24, 30 December 2013 (UTC)

- According to general relativity, that inertial "pull" is indistinguishable from being at rest with a force being applied. In the rotating frame, this apparent force is the centrifugal force. 199.27.128.62 05:58, 4 February 2014 (UTC)
- the explanation is correct, and you can describe forces acting on you in non-inertial frames. If you take Bond to be the origin of a rotating frame of reference then the position of Bond will be (0,0,0) at all times. So in that frame of reference, Bond is at rest (not "sort of at rest, really at rest). The equation of motion for Bond is

F + Fe + Fw + Fc = ma = 0

- (F is external force, Fe is the force due to angular acceleration of the frame (relative to some inertial frame), Fw is centrifugal force and Fc is coriolis force )
- Since the sum of the three "fictious" force are nonzero, and Bond is at rest in this frame, the force F must also be non-zero. This force F is the inward push of the centrifuge. In the moving car example, you can't tell if you are accelerating or if there is a massive graviational field pulling you backwards. From your perspective the experience is identical. If you take this idea and run with it you get general relavitity141.101.70.67 11:30, 6 August 2014 (UTC)