Editing Talk:2048: Curve-Fitting

Jump to: navigation, search
Ambox notice.png Please sign your posts with ~~~~

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 12: Line 12:
 
: Google-Fu reveals that it's a continuous probability distribution.  This isn't bad per se, but it is quite visually distinctive and also can be quite...concerning if the data set isn't one where probability should be an issue. [[User:Werhdnt|Werhdnt]] ([[User talk:Werhdnt|talk]]) 18:00, 19 September 2018 (UTC)
 
: Google-Fu reveals that it's a continuous probability distribution.  This isn't bad per se, but it is quite visually distinctive and also can be quite...concerning if the data set isn't one where probability should be an issue. [[User:Werhdnt|Werhdnt]] ([[User talk:Werhdnt|talk]]) 18:00, 19 September 2018 (UTC)
  
:: This is not the issue, but the fact that the moments (such as mean and variance) of the distribution don't exist = converge. See edited explanation. So if you wanted to estimate the parameters of the distribution, taking the sample mean for example will not converge with the number of data points, and is therefore bad to attempt. It is more mathematically alarming than alarmingly mathematical. [[User:GamesAndMath|GamesAndMath]]
+
:: This is not the issue, but the fact that the moments (such as mean and variance) of the distribution don't exist = converge. See edited explanation. So if you wanted to estimate the parameters of the distribution, taking the sample mean for example will not converge eith the number of data points, and is therefore bad to attempt. It is more mathematically alarming than alarmingly mathematical.
  
 
:: My own Google-Fu brought me to a page with this information: “The distribution is important in physics as it is the solution to the differential equation describing forced resonance, while in spectroscopy it is the description of the line shape of spectral lines.” (from here: https://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/dist/dist_ref/dists/cauchy_dist.html) [[User:Justinjustin7|Justinjustin7]] ([[User talk:Justinjustin7|talk]]) 18:09, 19 September 2018 (UTC)
 
:: My own Google-Fu brought me to a page with this information: “The distribution is important in physics as it is the solution to the differential equation describing forced resonance, while in spectroscopy it is the description of the line shape of spectral lines.” (from here: https://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/dist/dist_ref/dists/cauchy_dist.html) [[User:Justinjustin7|Justinjustin7]] ([[User talk:Justinjustin7|talk]]) 18:09, 19 September 2018 (UTC)

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Templates used on this page: