Talk:2711: Optimal Bowling

Explain xkcd: It's 'cause you're dumb.
Jump to: navigation, search


Who cares about rules? I mean, I'm pretty sure your score won't count according to rules if you bowl from establishment uphill from bowling alley. -- Hkmaly (talk) 05:36, 15 December 2022 (UTC)

If the ball has a diameter of 8.5 inches (multiplied by 2.54 and Pi makes about 67.8cm circumference) the rpm is also limited by the speed of light of the surface (reached at about 6.4x10^9rpm).

Please elaborate on how widespread the aforementioned destruction would be. 172.71.154.38 10:50, 15 December 2022 (UTC)

See What-If #1 (https://what-if.xkcd.com/1/) for reference. Elektrizikekswerk (talk) 11:01, 15 December 2022 (UTC)
Really wide. Really, really wide.172.70.91.127 09:49, 19 December 2022 (UTC)

Randall is clearly overestimating the mass range at which "equipment damage" would occur. Even 10^3 kilos is a //car//. I'm pretty sure that throwing a bowling ball the mass of a car would do a lot of equipment damage. I believe the 10^10 to 10^20 range should be "widespread destruction" (already a category above) and between that and the Schwarzchild mass should be something like "all life on Earth destroyed" because 10^20 kilos is plenty large enough for a global killer asteroid (admittedly its velocity would be much smaller... but still, I don't see how you have 1% of the Moon's mass in bowling ball without wiping out all life on Earth). 172.70.85.175 11:20, 15 December 2022 (UTC)

That's the joke :) The humour is in the understatement Xseo (talk) 11:51, 15 December 2022 (UTC)
If the bowling ball is made from material on Earth having 1 % of the Moons mass concentrated in one city but without any speed should not have any wide impact on Earth. Probably alot for those in the city. the gravity changes locally, and surrounding area. But not massive destruction. If 1% of Moons mass was added to Earth I also do not think it would make much difference, as long as it was placed softly on Earth. --Kynde (talk) 12:26, 15 December 2022 (UTC)

For further edification: A 10^3 kg bowling ball traveling at 10^3 m/s is approximately equivalent to a shell fired from the main battery gun of a battleship. 162.158.159.74 11:40, 15 December 2022 (UTC)

Or maybe a cannonball...?172.70.162.46 12:56, 16 December 2022 (UTC)

The aim graph is wrong, isn't it? I have never practiced bowling, but I am pretty sure I have seen videos explaining that you need to aim on the side, and the spin will bring the ball to strike the pin group with an angle, not head on. 172.71.134.132 12:26, 15 December 2022 (UTC)

It's not clear what the target is in the aim graph. If it's straight down the middle towards the headpin, you're right. But maybe it's aiming towards that optimal curve angle. Barmar (talk) 14:50, 15 December 2022 (UTC)
on that note, what is assumed for the other 3 parameters as 1 is changed along the graph? 0? average? optimal? 172.71.22.160 15:04, 15 December 2022 (UTC)Bumpf
considering the whole graph covers everything up to and including facing away from the lane, it could be that the spike "at" 0 degrees encompasses a lot of fine grain control. After all being 5 degrees off center wouldn't show up much in a 360 degree span, but could make a decent difference on where the ball hits within a lane.172.70.134.96 15:59, 15 December 2022 (UTC)
It really depends on what kind of spin you impart. Beginners often bowl with virtually no spin, in which case the ideal aim point would be straight on (to the pocket between pins 1 and 2 or between 1 and 3, not to the headpin itself). Experience and/or instruction will typically lead to bowlers imparting spin that causes the ball to curve in the direction opposite the throwing hand, i.e., curving left for a right-handed bowler, so the more spin you impart, the farther you want to aim to the same side as your throwing hand. Dansiman (talk) 18:33, 21 December 2022 (UTC)

Is there an extra gag in the fact all the numbers are on a logarithmic scale, or is that just so he can get to the absurdist values? 172.68.174.164 16:52, 15 December 2022 (UTC)

I would like to know precisely how anybody scores a strike when their ball has 0 RPM!? Y'all playing on ice rinks!? --172.69.79.185 00:49, 16 December 2022 (UTC)

I think "spin" is referring to horizontal spin (along the vertical axis), since "speed" is a separate graph. No spin then just means no curve. 172.71.182.49 08:19, 16 December 2022 (UTC)
Actually, bowling lanes are supposed to have a coating of oil on them, so you absolutely can throw a ball with no spin in any direction, and it will glide about ⅔ of the way down the lane before the very low amount of friction on the ball introduces any appreciable spin in the direction of travel. Dansiman (talk) 18:33, 21 December 2022 (UTC)

At the beginning it references "Ten Pin Bowling" by which I presume the author of that section was referring to "Duck Pin Bowling" which is the major form in the United States. There is also "Candle Pin Bowling" which is a different class of Ten Pin, but with very differently shaped pins and smaller balls without finger holes and mostly limited to small areas of the Northeast. Some of the physics is enough different that the curves would vary if they weren't so absurdly scaled already, in that sense the graphs are as applicable to Candle Pin as they are to Duck Pin. Of course, this is all in the extreme detail that's not really relevant to readers understanding, so I'm not sure if it needs to be explained. MAP (talk) 05:12, 16 December 2022 (UTC)

  • No, I really meant ten-pin bowling. Duckpin bowling is a variation played regularly in only a few states, and candlepin bowling is yet another variation played in only a few states. But the kind of bowling most widely played in the U.S. is ten-pin bowling. See the respective Wikipedia articles linked in the preceding sentences. --172.71.254.94 08:17, 16 December 2022 (UTC)

I'm surprised Randall didn't include a graph on ball size effect on your chances ;-) --162.158.129.138 09:51, 16 December 2022 (UTC)


The hovertext excludes setting up pins in a non-standard bowling area. (such as with kids bowling pins in your living room) One wonders if this is intentional.

I'm not sure I understand why the graph drops in the area of 'equipment damage'. Do you not get credit for a strike if the pins are all knocked down but the lane is destroyed? 172.70.206.92 (talk) 16:40, 16 December 2022 (please sign your comments with ~~~~)

No. According to USBC Rule 8(g), damage causing the lane to come out of compliance is treated as the ball encountering a foreign obstacle (i.e. the damaged surface fragments) and as such results in a dead ball, requiring the delivery to be rebowled; presumably in a different lane. 172.69.22.16 10:32, 20 December 2022 (UTC)
A ball too heavy to properly be rolled may damage equipment but not takes down any pins. —While False (museum | talk | contributions | logs | rights | printable version | page information | what links there | related changes | Google search | current time: 12:16) 16:51, 16 December 2022 (UTC)
...IRTA graph 2 (speed), where the "probability of strike" drops, right into the amorphous "equipment damage" getting reached, not the mass, where it quickly drops to (near-)zero and stays there until the similar cloud.
But it is likely much the same reason. An increasingly infeasible speed is going to effect the result. And probably even if you get a direct front-pin hit (or an angle close enough to make for a useful version of a Strike under most circumstances), it conveys forward momentum enough to power the middle-pins straight though and cause a Split (not only not a Strike, but reduces the possibility of making your second shot a plausible Spare).
And, by the time you make your parameters actually at a level to cause damage, it no longer has a good Strike Probability value, with the state of the equipment (then the vicinity!) taking over from the original plot. 172.70.162.134 17:07, 16 December 2022 (UTC)
What does IRTA mean?? I can't find a meaningful definition of it anywhere.108.162.237.194 22:17, 16 December 2022 (UTC)Bumpf
"I Read That As...". HTH, HAND. (( <= "Honour To Hastur, His Ascendence Nears Daily" ;) )) 23:22, 16 December 2022 (UTC)

It seems like another important data point is direction in relation to the pins. Best chance of success is when you're on the lane side of the pins. Anywhere else, you could still be aiming squarely at the pins, but the ball would have to go through solid objects to hit the pins: walls, machinery, ground... Mschmitt (talk) 19:46, 17 December 2022 (UTC)