Editing 2100: Models of the Atom

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 15: Line 15:
  
 
;Plum pudding model
 
;Plum pudding model
In the late 19th and early 20th centuries, the study of these "atom" things faced a crisis: where would the newly discovered "{{w|electron}}s" go? In 1904, physicist {{w|J. J. Thomson}}, who discovered electrons, had an idea: maybe the electrons were small point charges moving around in a big mass of positive charge. This was the "{{w|plum pudding model}}", the second model on the comic, called this because people imagined the positively charged mass as a "{{w|Christmas pudding|plum pudding}}". (The title text references Thomson (although misspelled as "J.J. Thompson") as well, along with the humorous observation that plum puddings themselves are made of atoms.) The problem with this approach is that same charges generally repel, resulting in the more mobile or unbalanced charges forming a surface shell around the others, attempting to escape, rather than being content to being randomly distributed among them.
+
In the late 19th and early 20th centuries, the study of these "atom" things faced a crisis: where would the newly discovered "{{w|electron}}s" go? In 1904, physicist {{w|J. J. Thomson}}, who discovered electrons, had an idea: maybe the electrons were small point charges moving around in a big mass of positive charge. This was the "{{w|plum pudding model}}", the second model on the comic, called this because people imagined the positively charged mass as a "{{w|Christmas pudding|plum pudding}}". (The title text references Thomson as well, along with the humorous observation that plum puddings themselves are made of atoms.) The problem with this approach is that same charges generally repel, resulting in the more mobile or unbalanced charges forming a surface shell around the others, attempting to escape, rather than being content to being randomly distributed among them.
  
 
;Tiny bird model
 
;Tiny bird model

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)