Editing 2413: Pulsar Analogy

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 17: Line 17:
 
Further elaborations of the analogy, rather than clarifying matters, are successively more surreal.  More misleading than the tape-measure is the idea of a laser measure being "exactly" like the emissions of a pulsar, which, although both pulse, are produced in entirely different ways and are at best simply helping the mind hold the concept.
 
Further elaborations of the analogy, rather than clarifying matters, are successively more surreal.  More misleading than the tape-measure is the idea of a laser measure being "exactly" like the emissions of a pulsar, which, although both pulse, are produced in entirely different ways and are at best simply helping the mind hold the concept.
  
βˆ’
When a tape measure retracts, the part of the tape outside the tape measure is not going directly towards the tape measure's center but rather towards a hole in the side. This means the tape possesses some angular momentum relative to the tape measure. In addition, when the tape measure retracts, the part of the tape inside the tape measure rotates around a spool (which pulls the part of the tape outside the tape measure inside), so it also has angular momentum relative to the tape measure. When the tape is completely retracted, the tape can no longer rotate relative to the tape measure. Because of the conservation of rotational momentum, the tape measure will start spinning at this point.
+
When a tape measure retracts, the part of the tape outside the tape measure is not going directly towards the tape measure's center but rather towards a hole in the side. This means the tape possesses some angular momentum relative to the tape measure. In addition, when the tape measure retracts, the part of the tape inside the tape measure rotates around a spool (which pulls the part of the tape outside the tape measure inside), so it also has angular momentum relative to the tape measure. When the tape is completely retracted, the tape can no longer rotate relative to the tape measure. Because of the conservation of rotational momentum, the tape measure will no longer spin at this point.
  
 
While pulsars also rotate quickly due to the conservation of angular momentum, the exact {{w|Pulsar#Formation,_mechanism,_turn_off|mechanism}} is completely different. Pulsars are formed when stars collapse due to no longer performing enough fusion to produce enough heat and energy to cancel out gravity. This causes the star to contract, which causes its mass, on average, to be closer to its axis of rotation, which causes the rotational inertia (also called the moment of inertia) to decrease. If the star's angular velocity stayed constant, this would cause the angular momentum to decrease, so the star's angular velocity must increase in order to offset the decrease in rotational inertia, i.e. the star (which is now a pulsar) spins faster. This is demonstrated [https://www.youtube.com/watch?v=_eMH07Tghs0 here]. This method requires an initial rotation, which comes from the star. (The star's rotation comes from the dynamics of the gas cloud which forms the solar system in the first place.)
 
While pulsars also rotate quickly due to the conservation of angular momentum, the exact {{w|Pulsar#Formation,_mechanism,_turn_off|mechanism}} is completely different. Pulsars are formed when stars collapse due to no longer performing enough fusion to produce enough heat and energy to cancel out gravity. This causes the star to contract, which causes its mass, on average, to be closer to its axis of rotation, which causes the rotational inertia (also called the moment of inertia) to decrease. If the star's angular velocity stayed constant, this would cause the angular momentum to decrease, so the star's angular velocity must increase in order to offset the decrease in rotational inertia, i.e. the star (which is now a pulsar) spins faster. This is demonstrated [https://www.youtube.com/watch?v=_eMH07Tghs0 here]. This method requires an initial rotation, which comes from the star. (The star's rotation comes from the dynamics of the gas cloud which forms the solar system in the first place.)

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)