Editing 2739: Data Quality

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 40: Line 40:
 
| a drawing of your cat
 
| a drawing of your cat
 
| Image and video formats that are considered 'lossy'. JPG (or "JPEG") format and the MPEG {{w|MPEG-2|group}} {{w|Advanced Video Coding|of}} formats typically use a range of data-compression methods that save space by selectively fudging (thus losing) what details it can of the image (and audio, where appropriate), to make disproportionate gains in compression; best used for real world images (and films) where real-world 'noise' can afford to be replaced by a more compressible version, without too much obvious change.
 
| Image and video formats that are considered 'lossy'. JPG (or "JPEG") format and the MPEG {{w|MPEG-2|group}} {{w|Advanced Video Coding|of}} formats typically use a range of data-compression methods that save space by selectively fudging (thus losing) what details it can of the image (and audio, where appropriate), to make disproportionate gains in compression; best used for real world images (and films) where real-world 'noise' can afford to be replaced by a more compressible version, without too much obvious change.
GIF compression is not 'lossy' in the same way, i.e. whatever it is asked to encode can be faithfully decoded, but Randall may consider its limitations (it can only write images of 256 unique hues, albeit that these can come from anywhere across the whole 65,536 "True color" range, plus transparency) to be a form of loss, as conversion from a more sophisticated format (e.g. PNG, below) could lose many of the subtle shades of the original and produce an inferior image. For this reason, GIF format becomes one best left to render diagrams and other computer-generated imagery with swathes of identical pixels and mostly sharp edges (and to utilize the optional transparent mask), for which JPEG compression will create prominant image artefacts. Alternatively, he may just have included it as a joke/nerd-snipe.
+
GIF compression is not 'lossy' in the same way, i.e. whatever it is asked to encode can be faithfully decoded, but Randall may consider its limitations (it can only write images of 256 unique hues, albeit that these can come from anywhere across the whole 65,536 "True color" range, plus transparency) to be a form of loss, as conversion from a more sophisticated format (e.g. PNG, below) could lose many of the subtle shades of the original and produce an inferior image. For this reason, GIF format becomes one best left to render diagrams and other computer-generated imagery with swathes of identical pixels and mostly sharp edges (and to utilize the optional transparent mask), for which JPEG compression will create prominant image artefacts.
 
|-
 
|-
 
| {{w|PNG}}, {{w|ZIP (file format)|ZIP}}, {{w|TIFF}}, {{w|WAV}}, raw data
 
| {{w|PNG}}, {{w|ZIP (file format)|ZIP}}, {{w|TIFF}}, {{w|WAV}}, raw data

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)