Editing 681: Gravity Wells

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 7: Line 7:
 
}}
 
}}
 
{{TOC}}
 
{{TOC}}
* The xkcd page links to [http://xkcd.com/681_large/ a much larger version].
+
 
 +
The xkcd page links to [http://xkcd.com/681_large/ a much larger version].
  
 
==Explanation==
 
==Explanation==
The comic shows the gravitational potential (energy transferred per unit mass due to gravity) for the positions of each planet in the solar system — including some moons and Saturn's rings. An object traveling along an upward slope loses energy, while an object traveling along a downward slope gains energy. Escaping a planet or moon's orbit requires enough energy (e.g. by walking, jumping, or rocket) to reach the top of either peak that defines the edge of the well. The peak to the left indicates the minimum energy required to exit orbit. The peak to the right indicates the maximum energy required to exit orbit. In order to exit orbit with the minimum amount of energy, you would have to travel towards the center of the solar system; to exit orbit with the maximum amount of energy, you would have to travel away from the center of the solar system (the Sun). In reality, the strength of gravity decreases with distance from the planet. However, a comparison of energy expended to escape the gravitational pull allows for a simpler comparison between the objects.
+
 
 +
The comic shows the gravitational potential (energy transferred per unit mass due to gravity) for the positions of each planet in the solar system — including some moons and Saturn's rings. An object traveling along an upward slope loses energy, while an object traveling along a downward slope gains energy.  
 +
 
 +
Escaping a planet or moon's orbit requires enough energy (e.g. by walking, jumping, or rocket) to reach the top of either peak that defines the edge of the well. The peak to the left indicates the minimum energy required to exit orbit. The peak to the right indicates the maximum energy required to exit orbit. In order to exit orbit with the minimum amount of energy, you would have to travel towards the center of the solar system; to exit orbit with the maximum amount of energy, you would have to travel away from the center of the solar system (the Sun). In reality, the strength of gravity decreases with distance from the planet. However, a comparison of energy expended to escape the gravitational pull allows for a simpler comparison between the objects.
  
 
The height of the graph is scaled to kilometers via the gravitational potential an object has at the given height assuming at a constant acceleration due to Earth's surface gravity. The {{w|Sun|Sun's}} gravity well is not shown in its entirety, but is just indicated on the far left as ''"Very very far down"''. Had it been shown in its full extent it would have made the rest of the drawing so small in comparison that it would have been unreadable. As the gravitational potential increases with distance from the sun, the graph has a general upward slope. To rise out of each well on the diagram, and therefore escape the planet's gravity, it would require the same energy required to rise out of a physical well of that depth at Earth's surface gravity.  
 
The height of the graph is scaled to kilometers via the gravitational potential an object has at the given height assuming at a constant acceleration due to Earth's surface gravity. The {{w|Sun|Sun's}} gravity well is not shown in its entirety, but is just indicated on the far left as ''"Very very far down"''. Had it been shown in its full extent it would have made the rest of the drawing so small in comparison that it would have been unreadable. As the gravitational potential increases with distance from the sun, the graph has a general upward slope. To rise out of each well on the diagram, and therefore escape the planet's gravity, it would require the same energy required to rise out of a physical well of that depth at Earth's surface gravity.  
  
The length of each gravity well is scaled to the diameter of the planet and the spacing between the planets is not to scale with distance from the sun. This is necessary to make the graph readable. Because the distances between the planets are condensed, the gravitational potential - from the gravity pulling toward the sun - accumulates quicker. This is the reason for the large peaks between the planets. The moons shown in the chart are at the appropriate distance from their respective planets' gravity wells for their orbits. Each planet is shown cut in half at the bottom of its well, with the depth of the well measured down to the planet's flat surface.
+
The length of each gravity well is scaled to the diameter of the planet and the spacing between the planets is not to scale with distance from the sun. This is necessary to make the graph readable. Because the distances between the planets are condensed, the gravitational potential - from the gravity pulling toward the sun - accumulates quicker. This is the reason for the large peaks between the planets. The moons shown in the chart are at the appropriate distance from their respective planets' gravity wells for their orbits.  
 +
 
 +
Each planet is shown cut in half at the bottom of its well, with the depth of the well measured down to the planet's flat surface.
  
 
==== Inner Planets ====
 
==== Inner Planets ====
Line 154: Line 160:
  
 
==Trivia==
 
==Trivia==
This comic used to be [https://web.archive.org/web/20211215032220/https://store.xkcd.com/products/gravity-wells-poster available as a poster] in the xkcd store before it was [[Store|shut down]].
+
*A print version of this comic is available in the [https://store.xkcd.com/products/gravity-wells-poster xkcd store].
  
 
{{comic discussion}}
 
{{comic discussion}}
 
 
[[Category:Comics with color]]
 
[[Category:Comics with color]]
 
[[Category:Large drawings]]
 
[[Category:Large drawings]]

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)