Editing 2214: Chemistry Nobel

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 12: Line 12:
 
By definition, each element has one more proton than the previous element - so element 1, hydrogen, has one proton in the nucleus, while element 2, helium, has two protons in the nucleus. The periodic table represents elements in their atomic form, where there are an equal number of protons and electrons (as opposed to an ionized form where they are unequal), so the structure of the periodic table is based on the structure of the "orbitals" that electrons fall into.
 
By definition, each element has one more proton than the previous element - so element 1, hydrogen, has one proton in the nucleus, while element 2, helium, has two protons in the nucleus. The periodic table represents elements in their atomic form, where there are an equal number of protons and electrons (as opposed to an ionized form where they are unequal), so the structure of the periodic table is based on the structure of the "orbitals" that electrons fall into.
  
βˆ’
The first row of the periodic table has elements whose electrons only have an "s orbital" (at least when the electrons are in their ground state, which is the non-excited state that they are normally in). There is only one s orbital in each row, and an s orbital only has room for two electrons, so there are only two elements in the first row. The Pauli exclusion principle, mentioned in xkcd [[658]], means that only two electrons can be in each orbital. The second row of the periodic table contains elements with only s and p orbitals. As mentioned, there is only one s orbital at each "level" of orbital, with each level basically corresponding to a row, but there are three p orbitals at each level, so there can be four total pairs of elements in the second row, for eight total elements in the second row. (You can see that level one has a total of 1^2 orbitals, or 1 orbital, while level two has 2^2 orbitals, or 4 orbitals.) After p orbitals, the next type of orbital that can exist at higher levels is a d orbital. For levels that have a d orbital, there are five d orbitals at each level. Beginning with the fourth row, you can see elements whose highest-energy electrons are in an s orbital (the first two columns), a p orbital (the last six columns), or a d orbital (the middle ten columns). The d orbitals for row four are actually classified as the 3d orbitals (meaning they belong to level three), but because they have higher energy than the 4s orbital, they are put on the fourth row. The "aufbau principle" says that electrons fill the lowest energy orbitals first, which means that level one orbitals get filled before level two orbitals, which get filled before level three orbitals, and that within each level the s orbitals get filled before the p orbitals. So, there are two columns on the periodic table for each orbital - although helium is put in the far right instead of in the second row with the other elements whose highest electron is the second one in an s orbital, because putting it on the far right shows that helium is stable like the other "noble gases" in the far right row.  
+
The first row of the periodic table has elements whose electrons only have an "s orbital" (at least when the electrons are in their ground state, which is the non-excited state that they are normally in). There is only one s orbital in each row, and an s orbital only has room for two electrons, so there are only two elements in the first row. The Pauli exclusion principle, mentioned in xkcd 658, means that only two electrons can be in each orbital. The second row of the periodic table contains elements with only s and p orbitals. As mentioned, there is only one s orbital at each "level" of orbital, with each level basically corresponding to a row, but there are three p orbitals at each level, so there can be four total pairs of elements in the second row, for eight total elements in the second row. (You can see that level one has a total of 1^2 orbitals, or 1 orbital, while level two has 2^2 orbitals, or 4 orbitals.) After p orbitals, the next type of orbital that can exist at higher levels is a d orbital. For levels that have a d orbital, there are five d orbitals at each level. Beginning with the fourth row, you can see elements whose highest-energy electrons are in an s orbital (the first two columns), a p orbital (the last six columns), or a d orbital (the middle ten columns). The d orbitals for row four are actually classified as the 3d orbitals (meaning they belong to level three), but because they have higher energy than the 4s orbital, they are put on the fourth row. The "aufbau principle" says that electrons fill the lowest energy orbitals first, which means that level one orbitals get filled before level two orbitals, which get filled before level three orbitals, and that within each level the s orbitals get filled before the p orbitals. So, there are two columns on the periodic table for each orbital - although helium is put in the far right instead of in the second row with the other elements whose highest electron is the second one in an s orbital, because putting it on the far right shows that helium is stable like the other "noble gases" in the far right row.  
  
 
The final type of orbital that exists as the ground state for a known element is the f orbital, but almost all periodic tables show the elements with their highest electrons in an f orbital - the lanthanides and actinides that are mentioned in the title text and described below - in rows below the table, to prevent the table from becoming too wide to print easily.
 
The final type of orbital that exists as the ground state for a known element is the f orbital, but almost all periodic tables show the elements with their highest electrons in an f orbital - the lanthanides and actinides that are mentioned in the title text and described below - in rows below the table, to prevent the table from becoming too wide to print easily.

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)