Editing 1430: Proteins

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 8: Line 8:
  
 
==Explanation==
 
==Explanation==
In this comic, [[Cueball]] is asking [[Megan]] what she does, to which she replies that she works on software to predict protein folding. There are many folding prediction software programs. Some of the most well known are {{w|Folding@Home}}, {{w|Rosetta@Home}} and {{w|FoldIt}}.
+
{{incomplete|More info on protein folding, expansion on F@H, possible expansion on title text explain.}}
  
{{w|Protein folding}} is the process by which proteins, which are floppy, unstructured chains of {{w|amino acids}} when initially synthesized in a cell, assume a stable, functional shape. If the folding process does not complete, or completes incorrectly, the resulting protein can be inactive or even toxic to the body. Misfolded proteins are responsible for several {{w|neurodegenerative}} diseases, including {{w|Alzheimer's disease}}, {{w|amyotrophic lateral sclerosis}} (ALS), and {{w|Parkinson's disease}}, as well as some non-neurodegenerative diseases such as cardiac amyloidosis.
+
In this comic, [[Cueball]] is asking [[Megan]] what she does, to which she replies that she works on software to predict protein folding. This is a reference to one of a number of folding prediction software programs, some of the most well known are {{w|Folding@Home}}, {{w|Rosetta@Home}} and {{w|FoldIt}}.
  
Cueball asks Megan if that is a hard problem, to which she replies, that someday someone may find a harder problem. Thus she indicates that at present time, this is the hardest problem in the world! That is saying a lot.  
+
{{w|Protein folding}} is a mechanism exhibited by protein structures to assume a functional shape. If the folding sequence does not complete, or completes incorrectly, the resulting protein can be inactive or even toxic to the body. These misfolded proteins are responsible for certain allergies, and are believed to be the cause of several {{w|neurodegenerative}} and other diseases.  
  
Cueball then asks Megan why it is such a hard computational problem; Megan's response is to ask Cueball if he's ever {{w|Origami|folded paper}} to make a {{w|Crane (bird)|crane}}. When he responds in the affirmative, she then compares the problem of predicting protein folding to creating a ''living'' crane by the paper-folding process. The analogy is that a protein cannot just fold to a figurative representation of a bio-molecule, the way a paper crane superficially resembles a live crane; the protein must assume an exact, perfect fold in order to be functional.
+
Cueball asks Megan why is it such a hard computational problem, and Megan replies that it is like folding a live crane, not just a paper crane. That is because a protein cannot fold to an abstract representation of its native fold (analogous to how a paper crane abstractly resembles the live crane) - it must assume an exact, perfect fold in order to be functional.
  
{{w|Levinthal's paradox}} is a thought experiment, also constituting a self-reference in the theory of protein folding. In 1969, Cyrus Levinthal noted that, because of the very large number of degrees of freedom in an unfolded polypeptide chain, the molecule has an astronomical number of possible conformations. For example, a polypeptide of 100 {{w|Residue (chemistry)|residue}}s will have 99 peptide bonds, and therefore 198 different {{w|Dihedral angle|phi and psi bond angles}}. If each of these bond angles can be in one of three stable conformations, the protein may misfold into a maximum of 3<sup>198</sup> different conformations (including any possible folding redundancy). Therefore, if a protein were to attain its correctly folded configuration by sequentially sampling all the possible conformations, it would require a time longer than the age of the universe to arrive at its correct native conformation. This is true even if conformations are sampled at rapid (nanosecond or picosecond) rates. The "paradox" is that most small proteins fold to their proper conformation spontaneously, on a millisecond or even microsecond time scale. This paradox is central to computational approaches to protein structure prediction.
+
{{w|Levinthal's paradox}} is a thought experiment, also constituting a self-reference in the theory of protein folding. In 1969, Cyrus Levinthal noted that, because of the very large number of degrees of freedom in an unfolded polypeptide chain, the molecule has an astronomical number of possible conformations. For example, a polypeptide of 100 residues will have 99 peptide bonds, and therefore 198 different phi and psi bond angles. If each of these bond angles can be in one of three stable conformations, the protein may misfold into a maximum of 3^198 different conformations (including any possible folding redundancy). Therefore if a protein were to attain its correctly folded configuration by sequentially sampling all the possible conformations, it would require a time longer than the age of the universe to arrive at its correct native conformation. This is true even if conformations are sampled at rapid (nanosecond or picosecond) rates. The "paradox" is that most small proteins fold spontaneously on a millisecond or even microsecond time scale. This paradox is central to computational approaches to protein structure prediction.
  
As Cueball mentally turns over the hypothetical process of folding paper to make a living crane, he wonders if he is allowed to perhaps "cut" the paper to make more complicated folds available. In origami, purists [https://web.archive.org/web/20200207151442/http://www.barf.cc/jeremy/origami/BOOK/essays/origami_purism/origami_purism.htm] considered it as cheating if you cut the paper or use more than one sheet of paper, which is why Cueball asked if he was 'allowed' to do such in the hypothetical exercise they are discussing.
+
Cueball asks whether he can make cuts during the folding process, as if this would then make folding a living crane somehow possible. Megan replies "if you can fold a Protease enzyme", an analogy to saying "if you can fold yourself some scissors". Protease enzymes are proteins whose job it is to break down (i.e. cut) other proteins, often in very specific ways. They are thus analogous to extremely specialized scissors. The meaning of this is that if, when trying to predict the folding trajectory in nature of protein A, one allows to make cuts - one is making the assumption that the Protease that cut protein A is already folded and functional. In other words, making cuts while folding just changes the question to how the protease doing the cutting was folded.
  
Megan replies "if you can fold a Protease enzyme;" these are proteins whose job it is to break down (i.e. "cut") other proteins, often in very specific ways. In this manner, Protease enzymes are analogous to extremely specialized scissors, so Megan is effectively saying "You can make cuts if you can fold yourself a pair of scissors." Of course, when trying to predict the folding trajectory in nature of a protein A, and one is allowed to make cuts during the process, one is making the assumption that the Protease that cut protein A is already folded and functional. In other words, making cuts while folding might actually make the process ''more'' complicated, not less, as now you have to consider how the cutting enzyme is folded, too.
+
In origami, purists [[http://www.barf.cc/jeremy/origami/BOOK/essays/origami_purism/origami_purism.htm]] considered it as cheating if you cut the paper or use more than one sheet of paper.
  
The title text refers to the result of folding a flapping bird in origami. By pulling the tail, the head will move forward and down. However, since the joke is about folding proteins, this idea is extrapolated to include the folded proteins. The C-terminus (end of the protein chain), in this case analogous of the tail, if "pulled" would cause a created cavity or tunnel to squeeze, much like pulling a knot would do the same.
+
The title text refers to the result of folding a paper crane in origami. Pulling the tail, the head will move forward and down. However, since the joke is about folding proteins, this idea is extrapolated to include the folded proteins. The C-terminus (end of the protein chain), in this case analogous of the tail, if "pulled" would cause a created cavity or tunnel to squeeze, much like pulling a knot would do the same.
  
{{w|Folding@Home}} (F@H) is a distributed computing project which aims to simulate protein folding for research purposes. Rather than the traditional model of using a supercomputer for computation, the project uses idle processing power of a network of personal computers in order to achieve massive computing power. Individuals can join the project by installing the F@H software (there is also a web version that can be run using Google Chrome) and are then able to track their contribution to the project. Individual members may join together as a team, with leaderboards measuring team and individual contributions.
+
{{w|Folding@Home}} (F@H) is a distributed computing project which aims to simulate protein folding for research purposes. Rather than the traditional model of using a supercomputer for computation, the project uses idle processing power of a network of personal computers in order to achieve massive computing power. Individuals can join the project by installing the F@H software, and are then able to track their contribution to the project. Individual members may join together as a team, with leaderboards measuring team and individual contributions.
  
Note that most modern computers do not "waste" computing time as much as older ones. They dynamically reduce their clock speed and other power consumption at times of low usage. If you donate computer time, you are probably also donating a bit of money to the cause in the form of your electricity bill. Many people consider this to be more fun, convenient and efficient than donating via credit card.
+
Please be aware that modern computers do not "waste" computing time in the same way as old ones - they dynamically reduce their clock speed and other power consumption at times of low usage. If you donate computer time, you are actually donating money to the cause in the form of your electricity bill (which sounds more convenient than via credit card anyway).
  
 
==Transcript==
 
==Transcript==
:[Cueball is talking with Megan.]
+
:[Cueball is talking with Megan]
 
:Cueball: What do you do?
 
:Cueball: What do you do?
 
:Megan: I make software that predicts how proteins will fold.
 
:Megan: I make software that predicts how proteins will fold.
Line 37: Line 37:
 
:Megan: Have you ever made a folded paper crane?
 
:Megan: Have you ever made a folded paper crane?
 
:Cueball: Yeah.
 
:Cueball: Yeah.
:Megan: Imagine figuring out the folds to make an actual ''living'' crane.
+
:Megan: Imagine figuring out the folds to make an actual <em>living</em> crane.
:Cueball: ...''just'' folds? Can I make cuts?
+
:Cueball: ...<em>just</em> folds? Can I make cuts?
 
:Megan: If you can fold a protease enzyme.
 
:Megan: If you can fold a protease enzyme.
 
 
{{comic discussion}}
 
{{comic discussion}}
[[Category:Comics featuring Cueball]]
 
[[Category:Comics featuring Megan]]
 

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)