2205: Types of Approximation

Explain xkcd: It's 'cause you're dumb.
Revision as of 19:20, 20 September 2019 by DgbrtBOT (talk | contribs) (Created by dgbrtBOT)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Types of Approximation
It's not my fault I haven't had a chance to measure the curvature of this particular universe.
Title text: It's not my fault I haven't had a chance to measure the curvature of this particular universe.

Explanation

Ambox notice.png This explanation may be incomplete or incorrect: Created by a BOT. Please mention here why this explanation isn't complete. Do NOT delete this tag too soon.
If you can address this issue, please edit the page! Thanks.

Transcript

Ambox notice.png This transcript is incomplete. Please help editing it! Thanks.


comment.png add a comment! ⋅ comment.png add a topic (use sparingly)! ⋅ Icons-mini-action refresh blue.gif refresh comments!

Discussion

The cosmologist is probably using Fermi's a la What-If 84: Paint the EarthOhFFS (talk) 20:34, 20 September 2019 (UTC)

In that What-If, the rounding formula for Fermi problem estimation is given as "Fermi(x) = round10(log10(x))". log10(pi) (Google search, shows calculator) is roughly .4971... so close enough that someone could do a "Fermi rounding" to either 1 or 10 and not really care one way or another. 162.158.142.118 21:19, 20 September 2019 (UTC)

As a physics Phd (though not working in astrophysics), approximating pi to 1 is not all that bad. Especially when the measurable quantities that go into the calculation usually have huge error bars.--172.68.59.120 21:03, 20 September 2019 (UTC)

Using natural units (setting c=hbar=1) is different from setting pi to 1. Using different units is always allowed and not an approximation. Setting pi to 1 on the other hand, is an approximation and is only justifiable if the other quantities in the calculation have huge uncertainty. --172.68.59.120 21:07, 20 September 2019 (UTC)