# Talk:2320: Millennium Problems

Ironically, Randall misspells Perelman as "Perlman" in the comic but spells it correctly in the alt-text.

172.69.63.147 02:56, 16 June 2020 (UTC)

Perhaps he meant Perlman the Perl-programming superhero? ;) 162.158.123.145 03:33, 16 June 2020 (UTC)
Or perhaps Ron Perlman wrote his own proof on his spare time from acting but never published it? --108.162.229.234 13:00, 20 June 2020 (UTC)
Ironic perhaps, but at whose expense? ;-) --172.68.215.141 20:44, 17 June 2020 (UTC)

There has been some controversy over the millennium prizes, given that in mathematics important results are often a product of the work of different mathematicians who are not necessarily close associates. Perelman reportedly believed that his work was a corollary to prior work by Richard S. Hamilton.

I think the idea of this comic is an extension to a question, which I've seen before in this discussion, "what if person A shows that 2 millennium problems are equivalent, and then person B proves one of them?" Should person B get both prizes, or should person A get one of them? It is easy to think of situations where it is hard to know who deserves the credit, and I think this comic takes that to a logical exteme. Probably not Douglas Hofstadter (talk) 03:59, 16 June 2020 (UTC)

The Wikipedia article for Grigori Perelman states the following: "The Clay Institute subsequently used Perelman's prize money to fund the 'Poincaré Chair', a temporary position for young promising mathematicians at the Paris Institut Henri Poincaré.", so no funding would be available for Randall's eighth prize. 162.158.74.61 04:21, 16 June 2020 (UTC)

By process of elimination, the matrix and the equation should represent Yang-Mills and P=NP, but which is which? The 4x4 matrix could represent the 4D unitary transformation from Yang-Mills? The equation seems to say 'Ar + (squiggles)' but I can't think of any complexity problems that might take this form. --Quantum7 (talk) 06:35, 16 June 2020 (UTC)

Is "millennium problems" also a pun on "millennial problems", i.e. those issues which seem straightforward to adults but baffle the younger generation (the "millennials")? See for example comic 2165. --188.114.102.48 00:48, 17 June 2020 (UTC)

no, because it wasn't created by Randall, but by the Clay Mathematics Institute, and they weren't in a punny mood at the time. Also, the prize was created a few years before millennials became enough of a 'thing' for such a pun to be funny. And finally, I'm too old to be a millennial and I don't find proving any of these propositions straightforward at all, even the one for which a proof has already been found. 12:01, 20 August 2020 (UTC)

The image is projected by a projector on the ground that Cueball is apparently standing in the way of, but there's no Cueball-shaped shadow on the projected image. 108.162.219.192 (talk) (please sign your comments with ~~~~)

"there's no Cueball-shaped shadow on the projected image." - of course not! Cueball is clearly constructed from lines - which (of course) have no width and therefore zero area and as a consequence, cannot obstruct any photons to cause a shadow to form. 172.69.70.213 02:13, 17 June 2020 (UTC)
Ha ha. No I think it is easy to see that Randall/Cueball is actually standing to the side of the projectors beam and he is thus not in front of the projector; it is thus not strange that his shadow is not there! --Kynde (talk) 09:32, 17 June 2020 (UTC)
"Cueball is clearly constructed from lines - which (of course) have no width and therefore zero area and as a consequence, cannot obstruct any photons to cause a shadow to form." Except, his head has to be solid because it completely obscures the lower right corner of the projection frame. 162.158.78.10 01:39, 21 June 2020 (UTC)

It is clearly Randall that makes this presentation based on the caption. Have added this to the explanation and transcript --Kynde (talk) 09:32, 17 June 2020 (UTC)

## Proof of the inconsistency of arithmetic

Regarding [1], could a professional number theorist please opine on the proof? And for that matter, is Peano arithmetic inconsistency that bad? If so, is it bad on the scale of 2020? I mean, if there are so many things equivalent to Peano arithmetic, then maybe one of them with a very slight change is consistent? 162.158.107.17 09:55, 17 June 2020 (UTC)

Imagine the meeting! It would be like if aliens were discovered. "Gentlemen, sooner or later it's going to leak that arithmetic is inconsistent. We need plans. Contingency plans! Get to work!" This could make the CDC zombies site look like a test run. We could have the Count muppet with a thirty minute speech capitulating to veganism. 172.68.189.179 21:37, 18 June 2020 (UTC)
In any other year, the inconsistency of arithmetic would cause the collapse of civilization. In 2020, it's keeping it up. 162.158.106.178 21:00, 20 June 2020 (UTC)

[2] 172.68.141.80 03:41, 30 June 2020 (UTC)